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Abstract. We examine the effect of non-local deformations on the applicability of interaction point time
ordered perturbation theory (IPTOPT) based on the free Hamiltonian of local theories. The usual argument
for the case of quantum field theory on a non-commutative space (based on the fact that the introduction
of star products in bilinear terms does not alter the action) is not applicable to IPTOPT due to several
discrepancies compared to the naive path integral approach when non-commutativity involves time. These
discrepancies are explained in detail. Besides scalar models, gauge fields are also studied. For both cases,
we discuss the free Hamiltonian with respect to non-local deformations.

1 Introduction

It is widely believed that the usual concept of space-time
locally modelled as flat Minkowski space breaks down at
distances of the magnitude of the Planck scale. One attempt
to describe physics at such small scales is to replace the com-
mutative space-time coordinates xµ by non-commutative
(NC) operators x̂µ implying uncertainty relations among
the coordinates [1]. The simplest model one can study is
characterised by the following commutation relations:

[x̂µ, x̂ν ] = iθµν , (1)

with θµν representing a real, constant, antisymmetric ten-
sor. We will study this model realised by the so-called
(Moyal–Weyl) star product replacing ordinary local prod-
ucts of fields within the usual quantum field theory (QFT),
referred to as NCQFT later on. This star product is defined
for real-analytic, L1 functions f , g as

(f ∗ g)(x) ≡ e
i
2 θµν∂ζ

µ∂η
ν f(x + ζ)g(x + η)

∣∣∣
ζ=η=0

. (2)

It is important to note the infinitelymany derivatives acting
within this product. Concerning QFT, especially the time
derivatives present for θ0i �= 0 turn out to be problematic.
In that case, a violation of unitarity has been observed [2]
when applying the rules given in [3]. Unitarity could be
reestablished in [4] using the Yang–Feldmann equation [5]
and in [1,6,7] by applying IPTOPT. Below, we will make
clear that this version of time ordering is a consequence
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of quantum mechanical basics. IPTOPT was worked out
in a more general context [8] applicable to a large class of
non-local interactions of scalar particles. The non-locality
can be realised by the integral representation of the star
product [9] as

(f � g)(x) =
∫

d4s

∫
d4l

(2π)4
f

(
x − 1

2
l̃

)
g(x + s) eils,

l̃ν := lµθµν . (3)

This makes the effect of time ordering more transparent.
The problems occurring for θ0i �= 0 can be identified with
the non-locality in time. Besides unitarity, the finite UV/IR
mixing behaviour [10] is a further advantage of IPTOPT.
At this point, we want to mention that in θ-expanded field
theories [11–13] these difficulties do not appear. However,
they might not be renormalisable [14,15].

So long, deformed field theory has been pursued in a
somewhat ambivalent way: The Moyal product has been
used in the interaction part of the Lagrangian, the bilinear
term remained unchanged [3] due to the argument that in
the action one star product can always be omitted:∫

d4x (f � g)(x) =
∫

d4x f(x)g(x). (4)

However, this is not directly applicable to the approach
based on IPTOPT. This is indicated by the differences
between the Feynman rules given in [3] and the compli-
cated ones based on IPTOPT [8]. There it was realised that
quadratic parts in the interaction do have a θ-dependent
contribution for θ0i �= 0. This raises the question whether
the free Hamiltonian in the framework of IPTOPT gets de-
formed or not when introducing the star product (3) and
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i.g. non-local deformations. We will generalise the results
of [1] to the case of U(1) gauge fields, and allow for more
general non-local deformations. We will also construct IP-
TOPT beginning with the Schrödinger equation to make
the definition of time ordering clear. The discrepancies be-
tween IPTOPT and a naive path integral approach giving
the simple Feynman rules [3] will be explained.

In Sect. 5, we will discuss the canonical deformation of
gauge field theory and BRST-symmetry also in the Hamil-
tonian approach.

2 Quantum mechanics

In this section, quantum mechanical basics needed later are
reviewed. After the introduction of various types of time
dependence of operators and states time ordered pertur-
bation theory is discussed.

2.1 Schrödinger picture

We start with the Schrödinger equation (with � = 1),

i
∂

∂t
|ZS(t)〉 = HS|ZS(t)〉, (5)

where HS is the Hamilton operator and |ZS(t)〉 is a time
dependent Schrödinger state. As long as HS is time inde-
pendent, we have the simple solution

|ZS(t)〉 = e−iHS(t−t0)|ZS(t0)〉, (6)

with some initial state |ZS(t0)〉.
Now the question is: What is the particular feature of

a specific model described by (5)? The answer is simple:
Different models are distinguished by different Hamiltoni-
ans. In particular, the states are defined as solutions of (5)
with a particular Hamiltonian HS.

In the Schrödinger picture (which is denoted by the in-
dex S) we have the notion of a time independent Hamilto-
nian which generates time dependent states. Physics is de-
scribed via matrix elements of operators with these states.
Those operators are assumed to be time independent and
(if we are lucky) known, so the interesting thing is to get
the correct states.

2.2 Heisenberg picture

But if we have a closer look at the matrix elements of some
time independent operator AS,

〈A〉 = 〈ZS(t)|AS|ZS(t)〉 (7)

= 〈ZS(t0)|e+iHS(t−t0)ASe−iHS(t−t0)|ZS(t0)〉,
we could also argue that we have time independent states
|ZH〉 := |ZS(t0)〉 and time dependent Heisenberg operators
AH (let t0 = 0),

AH(t) := e+iHStASe−iHSt. (8)

This is the Heisenberg picture. Instead of fixing the opera-
tors and searching for time dependent states, we keep the
states fixed and put our interest in time evoluting opera-
tors.

Instead of the Schrödinger equation (5) for the states,
we now have the Heisenberg equation for the Heisenberg
operators, obtained from differentiating (8) with respect to
the time (note that AS does not explicitly depend on time),

−i
∂

∂t
AH(t) = [HH, AH(t)]. (9)

Here, HH = HS is still time independent. The Heisenberg
equation looks indeed very similar to the Schrödinger equa-
tion.

2.3 Dirac picture

Somehow in between is the Dirac picture, where states and
operators have a time evolution. The free part H0S of the
Hamiltonian HS = H0S + HIS is used to describe the time
evolution of the operators, whereas the interaction part HIS
will describe the time evolution of the states. The states
in the interaction picture are defined as

|ZD(t)〉 := eiH0St|ZS(t)〉 . (10)

From 〈ZS|AS|ZS〉 = 〈ZD|AD|ZD〉 we conclude

AD(t) := e+iH0StASe−iH0St . (11)

With

H0D = H0S, HID(t) := e+iH0StHISe−iH0St,

[H0S, exp(±iH0St)] = 0, (12)

HID(t = 0) = HIS,

we find the two evolution equations (from (5) and (10),
respectively)

−i
∂

∂t
AD(t) = [H0D, AD(t)],

i
∂

∂t
|ZD(t)〉 = HID(t)|ZD(t)〉. (13)

We see that the time evolution of the operators is defined
by the free Hamiltonian, so that AD(t) is simply a solution
of the free theory. The time evolution of the states, on the
other hand, depends only on the interaction Hamiltonian.
Note that, since the free Hamiltonians in the Schrödinger
and Dirac picture are the same, we define H0S = H0D ≡ H0
from now on.

2.4 IPTOPT

Given some interaction Hamiltonian HID(t) in the Dirac
picture, the evolution equation (13) for the Dirac states
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can be solved by introducing the time evolution operator
U(t, t0) as

U(t, t0)|ZD(t0)〉 ≡ |ZD(t)〉. (14)

The well known solution of the resulting differential equa-
tion with the boundary condition U(t0, t0) = 1 is

U(t, t0)

=
∞∑

n=0

(−i)n

n!

∫ t

t0

dt1 . . .dtn T{HID(t1) . . . HID(tn)}

≡ T e−i
∫ t

t0
HID(t′)dt′

. (15)

The time ordering operator is denoted by T , and it should
be pointed out here that it rearranges the whole operators
HID(t) according to their time argument t. It does not act
on parts of HID(t). We call this interaction point time or-
dering (IPTO) to distinguish it from other possible time
orderings of objects. Since we are considering non-local de-
formations of the classical theory, the concept of interaction
at a point is no longer valid. By interaction point we mean
the time argument of the interaction Hamiltonian in (15).
The interaction Hamiltonian may of course be a non-local
expression and contain products of fields at different times;
cf. (3).

In order to describe scattering processes, we need the
S-operator defined by

S ≡ U(∞, −∞) = T e−i
∫

dt HID(t). (16)

Again, T acts on the time argument t of HID(t). Only
for simple theories such as scalar φ4-theory, one can write
HID(t) = − ∫

d3xLID(t, x). But note that IPTOPT princi-
pally requires the interaction Hamiltonian and not the La-
grangian.

S-matrix elements are thus given by

Sfi := 〈f |S|i〉, (17)

where |i〉 and 〈f | represent the incoming and outgoing
states, respectively.

3 Quantum field theory

The operators we have dealt with in the last section can
usually be expressed in terms of field operators φ and their
canonical conjugates π. Their operator character is mani-
fested by the equal time commutation relations

[π(t, x), π(t, x′)] = [φ(t, x), φ(t, x′)] = 0,

[π(t, x), φ(t, x′)] = −iδ3(x − x′). (18)

For the application of IPTOPT the free field operators,
which are given in the Dirac picure, are especially impor-
tant. Their dynamics can be characterised by the Lagrange
or Hamilton formalism, as we will briefly discuss in this
section. The main investigation of this section is the effect
of deformation on the free Hamiltonian H0 → H∗

0 . Star
products in the action can be left out for quadratic terms,

which is often given as the reason that the free theory on
non-commutative spaces is the same as for the commutative
one. In the Hamiltonian, however, the star product does
not automatically (only for θ0i = 0) drop out of quadratic
terms in the interaction. This is the reason why we address
the deformation of the free Hamiltonian from another point
of view.

3.1 Commutative space

The free scalar field is described by the equation of motion

(� + m2)φ = 0. (19)

This equation of motion can be obtained by a field variation
of the action,

W =
∫

dtL0 =
∫

d4xL0,

L0 =
1
2

(∂µφ)(∂µφ) − 1
2

m2φ2,

δW = 0 ⇒ (� + m2)φ = 0. (20)

Another possibility is the description via the Hamiltonian
H =

∫
d3xH,

π :=
∂L
∂φ̇

= φ̇, H := φ̇π − L. (21)

An explicit calculation yields

H0 =
∫

d3x
1
2

(φ̇2 + (∇φ)2 + m2φ2) ≥ 0. (22)

H0 is interpreted as the total energy of the system. Energy
conservation d

dt H0 = d
dt

∫
d3xH0 = 0 is obtained by use

of partial integration and the equation of motion.
Note that φ and π correspond to x (the current elon-

gation) and p (the momentum) of the harmonic oscillator,
whereas the space coordinates x could be thought of as “la-
bels” of the infinitely many harmonic oscillators hanging
around in space. Only time is always time.

Since φ satisfies the free field equation, we can write it
as φ(x) = φ+(x) + φ−(x), where

φ−(x) =
1

(2π)3/2

∫
d3k√
2ωk

a−(k) e−ixµk+µ

,

φ+(x) =
1

(2π)3/2

∫
d3k√
2ωk

a+(k) e+ixµk+µ

. (23)

Here we have k+ = (ωk, k), ωk =
√

k2 + m2. The combi-
nation with (18) yields

[a−(k), a+(k′)] = δ3(k − k′). (24)

Finally the Hamiltonian can be rewritten as

H0 =
∫

d3k ωk
1
2

(a+(k)a−(k) + a−(k)a+(k)). (25)
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3.2 Non-local deformation

In this subsection, we want to study the effect of general
non-local deformations on the free scalar Hamiltonian. At
the end, we will examine some examples, such as canonical
deformation. Let us start with the usual Hamiltonian

H0 =
∫

d3x
1
2

(φ̇2 + (∇φ)2 + m2φ2). (26)

Now, let us introduce a non-local deformation of the above
pointwise product:

f(x)g(x) →
∫

dµ w(µ) f(x + h1(µ)) g(x + h2(µ)). (27)

An n-tuple of real numbers is denoted by µ, and the h’s
represent the non-localities mapping µ into a four-vector
(see [8] for details).1 Furthermore, note that not all choices
of w, h1, and h2 make sense. For example, it will become
clear below that certain choices are not even lower bounded.
For H0 one thus gets

H0(t) → H∗
0 (t)

=
1
2

∫
d3x

∫
dµ w(µ) (28)

×(
∂νφ(x + h1(µ))∂νφ(x + h2(µ))

+m2φ(x + h1(µ))φ(x + h2(µ))
)
.

Still, φ(x) shall denote the free field operator obeying the
usual free field equation with physical mass m given by

∂µ∂µφ − m2φ = 0. (29)

Therefore, we can apply Fourier transformation and in-
terpret the coefficients as creation and annihilation oper-
ators a†(k) and a(k), respectively. Straightforward calcu-
lation yields

H∗
0 (t) =

1
2

∫
d3k

∫
dµ w(µ) (30)

×(
a(k)a†(k)eik+(h1(µ)−h2(µ))

+a†(k)a(k)e−ik+(h1(µ)−h2(µ))).
The coefficients of the terms proportional to a†(p)a†(k)
and a(p)a(k) vanish:

(p+µk+µ + m2)δ3(k + p) = 0,

whereas the coefficient of a(p)a†(k) and a†(p)a(k) is pro-
portional to

(−p+µk+µ + m2)δ3(k + p) = 2ω2
pδ3(p + k).

1 At this point, this notation might look unnecessarily com-
plicated, and one might ask, why not use two four-vectors a1

and a2 instead of the non-localities h1(µ) and h2(µ). However,
we prefer to be consistent with the notation of [8]. Also, the
notation used here seems to be more general.

Usually, the Hamiltonian is normal ordered. For H∗
0 we ob-

tain
: H∗

0 (t) :=
∫

d3k ωk a†(k)a( k)ξ( k), (31)

where ξ is given by

ξ(k) =
∫

dµ w(µ) cos(k+(h1(µ) − h2(µ))). (32)

Note that for certain choices of w, h1, and h2, ξ(k) and
consequently also H0 might not be lower bounded. If ξ(k)
is constant, H∗

0 and H0 only differ by an overall normali-
sation constant. Therefore, the free Hamiltonian would be
unaltered. But what deformations do that job?

A trivial solution to this question is the choice h1(µ) =
h2(µ) and the requirement

∫
d(µ) w(µ) < ∞. Actually this

deformation is still local.
The next example is canonical deformation, discussed

in the Introduction. We have µ = {l, s}, w(µ) =
exp(isl)/(2π)4, h1(µ) = − 1

2 l̃ and h2(µ) = s. Thus, we
obtain for ξ

ξ(k) = e−ik+k̃+/2 = 1, (33)
and the free Hamiltonian is unaltered by the deforma-
tion [1]. The use of the perturbation theory worked out
in [6, 8, 9] is justified.

As a third example, we consider the approach to UV-
finite theories considered in [16]. Comparison with our def-
initions yields

µ = {a1, a2}, h1(µ) = ζa1, h2(µ) = ζa2,

w(µ) = 2c2e− 1
2 (aν2

1 +aν2
2 )δ4(a1 + a2).

Therefore, we have

ξ(k) = 2c2π2e−ζ2k+2
ν , (34)

where ζ has the dimension of length in order to keep the
parameters ai dimensionless and to provide control over the
non-locality, and c2 represents a normalization constant.
With a suitable choice for c2 we get the following Hamil-
tonian:

: H∗
0 (t) :=

∫
d3k ω′

k a†(k)a( k)ξ( k), (35)

where
ω′

k = ωke−ζ2k+2
ν . (36)

In principle, this Hamiltonian can be interpreted as the
new free particle energy.

The simplified UV-finite QFT introduced in [17] (cf.
also [18]) gives a similar result. We have µ = {b1, b2} (b1 and
b2 are 4-dimensional vectors), w(µ) = exp(−b1

Tb1−b2
Tb2),

h1(µ) = M b1 and h2(µ) = M b2. Hence, ξ is given by

ξ(k) = e− 1
2 k+Tκ k. (37)

In the last two examples the deformed free Hamiltonian
does not equal the undeformed one. Also, the interpretation
of ω′

k as the energy of a physical state with momentum k
is troublesome, since the energy goes to zero for large k.
Therefore, the deformation has only been introduced in
the interaction terms in [16,17], respectively.
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4 A conceptual note

In this section, we want to discuss discrepancies between
IPTOPT and the naive path integral approach (NPIA).
By IPTOPT we mean calculations according to (15) with

HID(x0) ≡ λ

k!

∫
d3x (φ∗)k(x), (38)

and φ denoting the field operators in the Dirac picture.
The resulting Feynman rules are given in [8]. By NPIA we
mean that one calculates n-point functions according to
the path integral

∫
Dφ φ(x1) . . . φ(xn) eiI[φ], (39)

with I denoting the corresponding action including iε terms:

I[φ] =
∫

d4x

[
L0 +

λ

k!
(φ∗)k(x) + iε

]
. (40)

The corresponding Feynman rules are the same as for the
local theory but with phase factors to be included for ver-
tices [3]. Meanwhile, it is clear that these two approaches
differ when non-commutativity involves time. The most
striking problem is the unitarity violation [2] when apply-
ing these naive Feynman rules, which can be cured by a
strict application of IPTOPT [4,7]. Another mismatch was
realised in [8], where it turned out that the star product of
NCQFT does not drop out of some quadratic terms which
might be considered as counterterms for example. But in
the Lagrangian (NPIA), star products become redundant
in any bilinear term.

For the local version of the model we are studying, both,
the NPIA and IPTOPT, give the same results. But for non-
local theories as NCQFT, these approaches are not equiv-
alent. To see the crucial points about these mismatches,
we sketch how to pass from IPTOPT to the NPIA [19].
One starts with the Hamiltonian HS ≡ HD(0) written as
a functional of canonical field operators
φD(t, x), πD(t, x) in the Dirac picture

HD(t) ≡ H[φD, πD; t]. (41)

To be specific, our version of IPTOPT and NCQFT gives

HD(t) = H0 + HID(t) (42)

combined with (38). The special notation of the functional
(41) is due to the non-localities, especially the ones in time:
it is not a functional depending just on field operators given
at fixed time t, but all possible times are involved (see
also (52) below). Furthermore, one assumes two complete
basis sets |q; t〉 and |p; t〉 for each time t being eigenstates
of the field operators in the Heisenberg picture φH(t, x)
and πH(t, x), respectively. The goal is to evaluate scalar
products 〈q′; t′|q; t〉 between basis vectors given at different
times t < t′. Then, one sandwiches sumsover complete basis
sets belonging to intermediate times ti with t < t1 . . . <

tN < t′. So far, everything might also work for non-local
field theories. Next, one has to evaluate matrix elements like

〈q′; t + dt|q; t〉 = 〈q′; t|e−iHSdt|q; t〉. (43)

At this point, HS is usually rewritten as

HS = eiHSte−iHStH[φD, πD; 0] (44)

= eiHStH[φD, πD; 0]e−iHSt.

In a local theory, the functional just depends on field op-
erators φD(0, x) evaluated at time t = 0 which can be
simply replaced using φD(0, x) = φH(0, x). As a matter of
course, one thus rewrites this by sandwiching unit operators
exp(iHSt) exp(−iHSt) as

eiHStH[φD, πD; 0]e−iHSt = eiHStH[φH, πH; 0]e−iHSt

= H[φH, πH; t]. (45)

However, these steps are problematic for theories which
are non-local in time. To see this, we consider an operator
OD defined as a Moyal product of two operators AD, BD
in the Dirac picture:

OD(x) ≡ (AD � BD)(x) (46)

=
∫

d4s

∫
d4l

(2π)4
eils AD

(
x − 1

2
l̃

)
BD(x + s).

The subscript D at OD indicating that OD has the time
dependence of an operator in the Dirac picture is justi-
fied since

OD(t, x) = eiH0tOD(0, x)e−iH0 t

holds. The transition from the Dirac to the Heisenberg
picture is now done as usual [19]:

OH(t, x) = eiHStOD(0, x)e−iHSt . (47)

Substituting (46), we get

OH(t, x) =
∫

d4s

∫
d4l

(2π)4
eilseiHSt

×AD

(
x0 − 1

2
l̃

)
BD(x0 + s)e−iHSt (48)

=
∫

d4s

∫
d4l

(2π)4
eilsW (t, t − l̃0/2)AH(x − l̃/2)

×W (t − l̃0/2, t + s0)BH(x + s)W (t + s0, t),

where x = (t, x), x0 = (0, x), and

W (t, t0) ≡ eiHSte−iH0(t−t0)e−iHSt0 . (49)

W (t, t0) is unitary and W (t, t) = 1, but in general W (t, t0)
is not the unit operator. In order to stay consistent one thus
has to redefine the non-commutative product with respect
to Heisenberg fields correspondingly. For the Hamiltonian
needed for path integrals, one could proceed with

eiHStH[φD, πD; 0]e−iHSt =: H ′[φH, πH; t]. (50)
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When non-locality involves time clearly H ′ �= H, and it can
be expected that dealing with H ′ is pretty hard. We assume
that H ′ �= H is the cause for the discrepancies between
IPTOPT and the NPIA for systems described by Hamil-
tonians which are non-local in time. Further problems are
expected when integrating out the conjugate momenta to
pass from the Hamiltonian to the Lagrangian formulation,
even if we accept H instead of H ′.2 This might be due to
the fact that non-locality in time means that H depends
on infinitely many time derivatives implying complicated
equations of motion [20]. Furthermore, the equivalence of
using the Lagrangian interaction or the Hamiltonian is not
justified anymore by path integrals. We believe that it is
important to check this explicitly. Besides derivative cou-
plings and counterterms, NCQED might also be affected
due to the complicated quantisation procedure which in-
volves derivatives through the constraints [21].

Before dealing with gauge field models in the following
section, we want to illustrate the differences of the NPIA
and IPTOPT. The perturbation expansion of the NPIA is
obtained by expanding the integrand in terms of the inter-
action leaving only the bilinear parts in the exponential.
The resulting path integrals can be carried out and one
gets Feynman rules which associate the usual propagators
∆F(x, y) (inverse of the bilinear parts) of the local theory
with lines, and vertices contain four-momentum dependent
phase factors. A time ordering interpretation of the result-
ing rules can be obtained by writing ∆F(x, y) in terms of
time ordered products of the free annihilation and creation
fields, φ− and φ+, respectively:

∆F(x, y) = τ(x0 − y0)[φ−(x), φ+(y)] (51)

+τ(y0 − x0)[φ−(y), φ+(x)].

Here, τ(t) is the time ordering step function τ(t) = 1 for
t > 0 and τ(t) = 0 for t < 0. This indicates that the NPIA
can be interpreted in the sense of a total time ordering
acting with respect to the time argument of each field. On
the other hand, the time ordering operator of IPTOPT
just rearranges whole interactions. Now, let us consider
φ4-theory. We have

(φ � φ � φ � φ)(z) (52)

=
∫ 3∏

i=1

(
d4si

d4li
(2π)4

eilisi

)
φ

(
z − 1

2
l̃1

)
φ

(
z + s1 − 1

2
l̃2

)

×φ

(
z + s1 + s2 − 1

2
l̃3

)
φ(z + s1 + s2 + s3),

which clearly expresses the non-locality. The two-point
function at first order inλ can thenbewritten a bit sloppy as

G(x, y) (53)

=
g

4!

∫
d4z 〈0

∣∣∣T (
φ(x)φ(y)

(
φ � φ � φ � φ

)
(z)

)∣∣∣0〉(0).

2 Clearly, this would not be equivalent to our IP-
TOPT approach. It would mean that we started with
HS = H[φH,πH;t = 0].
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Fig. 1. Example of field arrangements

Let us discuss the total and the IPTOPT time ordering for
one particular geometrical situation with respect to (53);
see Fig. 1. The arrangement of fields for the left figure
corresponds to the following non-vanishing contribution
to the total time ordering of (53):

G(x, y)

=
∫

d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi

)
(54)

×τ

(
s0
1+s0

2+s0
3+

1
2

l̃01

)
τ

(
z0− 1

2
l̃01−x0

)

×τ

(
x0−z0−s0

1+
1
2

l̃02

)

×τ

(
z0+s0

1−
1
2

l̃02−y0
)

τ

(
y0−z0−s0

1−s0
2+

1
2

l̃03

)

×〈0
∣∣∣φ(z+s1+s2+s3)φ

(
z− 1

2
l̃1

)
φ(x)

×φ

(
z+s1− 1

2
l̃2

)
φ(y)φ

(
z+s1+s2− 1

2
l̃3

) ∣∣∣0〉(0).

We find that there are 6! = 720 different contributions to
(53) when interpreting the time ordering in the Gell-Mann–
Low formula as a total time ordering of all field arguments,
as one would expect. This kind of time ordering guarantees
that only causal processes contribute to the S-matrix.

In contrast to this total time ordering, we now have in-
teraction point time ordering (right figure), which is defined
with respect to the interaction point :

G′(x, y)

=
∫

d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi

)
τ(x0−z0)τ(z0−y0)

×〈0
∣∣∣φ(x)φ

(
z− 1

2
l̃1

)
φ

(
z+s1− 1

2
l̃2

)

×φ

(
z+s1+s2− 1

2
l̃3

)
(55)

×φ(z+s1+s2+s3)φ(y)
∣∣∣0〉(0).
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There are now only 3! = 6 different contributions of this
type. For most contributions some of the fields are now
at the “wrong” place with respect to the total time order.
Thus the non-commutative version (55) of the Gell-Mann–
Low formula violates causality but preserves unitarity (as
we want to stress once more). After all, contributions to
the Dyson series are precisely ordered only with respect to
the time stamp of the interaction Hamiltonians.

5 Gauge field theory

In this section, we will compute the non-commutative
Hamiltonian for pure gauge theory, with and without
ghosts. For simplicity, we restrict ourselves to the case of
U(1) gauge theory. We also do not employ Seiberg-Witten
maps, but only replace the pointwise product of fields with
the ∗-product (3).

5.1 Gauge fixed Lagrangian

The free part of the pure U(1) gauge field Lagrangian on
commutative space reads

L0 = − 1
4

fµνfµν − 1
2α

(∂µAµ)(∂νAν), (56)

where we have defined

fµν := ∂µAν − ∂νAµ. (57)

The free field equation reads

�Aµ −
(

1 − 1
α

)
∂µ(∂νAν) = 0. (58)

For the free field momenta we find

Πi = f i0 = +f0i, Π0 = − 1
α

(∂µAµ). (59)

Thus we define the non-commutative Hamiltonian

H∗
0 =

∫
d3xH∗

0 ≡
∫

d3x

(
1
2

{Ȧµ, Πµ}� − L�
0

)

=
∫

d3x
1
2

{Ȧi, f0i}� +
1
2

∂µAν � fµν︸ ︷︷ ︸
− 1

4 {Ȧi,f0i}�− 1
4 {∂iA0,fi0}�+ 1

2 ∂iAj�fij

− 1
2α

{Ȧ0, ∂
µAµ}� +

1
2α

(∂µAµ) � (∂νAν)

=
∫

d3x
1
4

{(Ȧi + ∂iA0), f0i}� +
1
2

∂iAj � fij︸ ︷︷ ︸
1
2 (∂iAj�∂iAj−∂iAi�∂jAj)

− 1
2α

(Ȧ0) � (Ȧ0) +
1
2α

(∂iAi) � (∂jAj)

+Ȧ0 � Ȧ0 − Ȧ0 � Ȧ0

=
1
2

∫
d3x

(
Ȧi � Ȧi − Ȧ0 � Ȧ0 + ∂jAi � ∂jAi

−∂jA0 � ∂jA0 (60)

+
(

α − 1
α

)
(Ȧ0 � Ȧ0 − (∂iAi) � (∂jAj))

)
.

We check explicitly the time independence of the Hamil-
tonian,

Ḣ∗
0 =

1
2

∫
d3x

1
2

{
Ȧi, Äi − ∇2Ai

+
(

α − 1
α

)
(−∂i∂

µAµ + ∂iȦ0︸︷︷︸)
}

�

− 1
2

{
Ȧ0, Ä0 − ∇2A0 −

(
α − 1

α

)
Ä0

}
�

, (61)

where ∇2 = ∂j∂j . Note that the use of the Moyal anticom-
mutators is crucial! The first line (without the under-
braced term) is zero due to the equation of motion for
Ai. After partial integration of the underbraced term with
respect to ∂i = −∂i it combines with the second line to the
equation of motion for A0. Thus we see that d

dt H
∗
0 = 0.

For quantisation we rewrite H∗
0 in a convenient form:

H∗
0 =

1
2

∫
d3x (−∂µAν � ∂µAν (62)

+
(

α − 1
2α

)
{∂µAµ, ∂νAν}�

)
.

We make the ansatz

Aµ(x) =
1

(2π)3/2

∫
d3k√
2ωk

(
a+

µ (k)e+ikx + a−
µ (k)e−ikx

)
,

(63)
where k0 = ωk > 0 is a (not necessarily specified) function
of |k|. Inserting this into the expression for H∗

0 we find

H∗
0 =

1
2

∫
d3k√
2ωk

∫
d3q√
2ωq

×
(

eit(ωk+ωq)− i
2 θµνkµqν δ3(k + q)

×
(

kµqµaν+(k)a+
ν (q)

+
(

α − 1
2α

)

×(−kµqνa+
µ (k)a+

ν (q) − kνqµa+
ν (k)a+

µ (q))
)

+e−it(ωk+ωq)− i
2 θµνkµqν δ3(k + q)

×
(

kµqµaν−(k)a−
ν (q)

+
(

α − 1
2α

)

×(−kµqνa−
µ (k)a−

ν (q) − kνqµa−
ν (k)a−

µ (q))
)
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+eit(ωk−ωq)+ i
2 θµνkµqν δ3(k − q)

×
(

−kµqµaν+(k)a−
ν (q)

+
(

α − 1
2α

)

×(+kµqνa+
µ (k)a−

ν (q) + kµqνa−
ν (k)a+

µ (q))
)

+e−it(ωk−ωq)+ i
2 θµνkµqν δ3(k − q)

×
(

−kµqµaν−(k)a+
ν (q)

+
(

α − 1
2α

)

×(+kµqνa−
µ (k)a+

ν (q) + kµqνa+
ν (k)a−

µ (q))
)))

.

Using now the delta functions we find

H∗
0 =

1
2

∫
d3k√
2ωk

∫
d3q√
2ωq

×
(

eit(ωk+ωq)− i
2 θµνkµqν δ3(k + q)

×
(

1
2

(k2aν+(k)a+
ν (q) + q2a+

ν (k)aν+(q))

+
(

α − 1
2α

)

×(−kµkνa+
µ (k)a+

ν (q) − qνqµa+
ν (k)a+

µ (q))
)

+e−it(ωk+ωq)− i
2 θµνkµqν δ3(k + q)

×
(

1
2

(
k2aν−(k)a−

ν (q)

+q2a−
ν (k)aν−(q)

+
(

α − 1
2α

)

×(−kµkνa−
µ (k)a−

ν (q) − qνqµa−
ν (k)a−

µ (q))
)

+δ3(k − q)
(

−kµkµaν+(k)a−
ν (k)

+
(

α − 1
2α

)

×(+kµkνa+
µ (k)a−

ν (k) + kµkνa−
ν (k)a+

µ (k))
)

+δ3(k − q)
(

−kµkµaν−(k)a+
ν (k)

+
(

α − 1
2α

)

×(+kµkνa−
µ (k)a+

ν (k) + kµkνa+
ν (k)a−

µ (k))
)))

.

With the equation of motion (58) expressed in terms of a±
µ ,

k2a±
µ (k) −

(
α − 1

α

)
kµ(kνa±

ν (k)) = 0, (64)

the terms with the non zero exponentials vanish. The re-
maining terms simplify considerably with the help of the
equation of motion. So we get

H∗
0 =

1
2

∫
d3k

2ωk

( − kµkµaν+(k)a−
ν (k) + k2a+

ν (k)a−
ν (k)

− kµkµaν−(k)a+
ν (k) + k2a−

ν (k)a+
ν (k)

)
(65)

=
∫

d3k

2ωk

( − k2(a+
0 a−

0 + a−
0 a+

0 ) + ω2
k(a+

i a−
i + a−

i a+
i )

)
= H0.

Quantisation can now be performed in the usual way by
imposing appropriate commutator relations (e.g. for α = 1,
Feynman gauge)

[a−
ρ (k), a+

µ (k ′)] = −gρµδ3(k − k ′) . (66)

5.2 BRST-symmetry

The free part of the BRST-expanded Lagrangian on a non-
commutative space reads

L0 =
∫

d3x

(
− 1

4
fµνfµν + B

(
∂µAµ +

α

2
B

)
(67)

+∂µc̄∂µc

)
.

The equations of motion read

∂L0

∂Aµ
= �Aµ − ∂µ(∂νAν) − ∂µB = 0,

∂L0

∂B
= ∂µAµ + αB = 0. (68)

We postpone the treatment of the ghost sector, which in the
free theory decouples from the gauge field sector anyway.
In order to construct the Hamiltonian we have

∂L0

∂Ȧi
=: Πi = fi0,

∂L0

∂Ȧ0
=: Π0 = B,

∂L0

∂Ḃ
=: ΠB = 0. (69)

The latter two equations are primary constraints. Since
their Poisson bracket is not weakly zero,

{φ1(x), φ2(x′)}PB = {Π0(x) − B(x), ΠB(x′)}PB

= −δ3(x − x′), (70)

they are second class constraints.
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Now, in order to write down the corresponding non-
commutative Hamiltonian, we firstly define the sym-
metrized �s-product,

A �s B =
1
2

(A � B ± B � A), (71)

where the sign is positive for usual fields and negative for
Grassmann valued fields. Again, the use of this �s-product
is crucial.

The total non-commutative Hamiltonian [21] thus reads
(with use of Ȧi �s Πi = (∂iA0 − Πi) �s Πi and partial in-
tegration)

H∗
T =

∫
d3x

(
Ȧµ �s Πµ + Ḃ �s ΠB − L0 + λ′

1 �s φ1

+λ′
2 �s φ2

)

=
∫

d3x


(λ′

1 + Ȧ0)︸ ︷︷ ︸
λ1

�s(Π0 − B) + (λ′
2 + Ḃ)︸ ︷︷ ︸

λ2

�sΠB

−A0 �s ∂iΠ
i − B �s ∂iA

i − α

2
B � B

+
1
2

Πi � Πi +
1
4

f ij � f ij


 , (72)

where φ1 and φ2 denote the constraints defined in (70),
λ′

1 and λ′
2 are Lagrange multiplier. Since the constraints

should be preserved in time, we find conditions for λi,

{H∗
T , φ1}PB = λ2 − ∂iΠ

i = 0,

{H∗
T , φ2}PB = −λ1 − ∂iA

i − αB = 0. (73)

According to Dirac [21], for quantisation the second class
constraints are imposed as strong operator equations. This
is only possible after elimination of the unphysical degrees
of freedom corresponding to the second class constraints.
Clearly, these degrees of freedom are simply B, ΠB .

So, with ΠB = 0 and B = Π0 we get the quantisable
non-commutative Hamiltonian

H ′∗ =
∫

d3x

(
−A0 �s ∂iΠ

i − Π0 �s ∂iA
i (74)

− α

2
Π0 � Π0 +

1
2

Πi � Πi +
1
4

f ij � f ij

)
.

With use of the Hamiltonian equations of motion for
the fields,

Ȧ0 =
δH ′∗

δΠ0 = −∂iA
i − αΠ0, (75)

Ȧi =
δH ′∗

δΠi
= ∂iA

0 − Πi,

we may express the field momenta by the fields and their
time derivative. Inserting this yields exactly the Hamilto-
nian (60) we have found for the gauge fixed theory:

H ′∗ =
∫

d3x

(
(−A0 �s ∂iȦi + A0 �s ∂i∂iA0)

+
(

1
α

∂iA
i � ∂jA

j +
1
α

Ȧ0 �s ∂jA
j

)

+
(
− 1

2α
∂iA

i � ∂jA
j − 1

2α
Ȧ0 � Ȧ0 − 2

2α
∂iA

i �s Ȧ0
)

+
(

1
2

Ȧi � Ȧi +
1
2

∂iA0 � ∂iA0 − Ȧi �s ∂iA0
)

+
(

1
2

∂iAj � ∂iAj − 1
2

∂iAj � ∂jAi

))

=
1
2

∫
d3x

(
Ȧi � Ȧi − Ȧ0 � Ȧ0 + ∂jAi � ∂jAi

− ∂jA0 � ∂jA0

+
(

α − 1
α

)
(Ȧ0 � Ȧ0 − (∂iAi) � (∂jAj))

)
. (76)

Note that the elimination of the B field does not spoil our
considerations with respect to the construction of pertur-
bation theory, since the B field has no interaction vertex.

Now for c, c̄ the situation is very simple,

LφΠ =
∫

d3xLφΠ =
∫

d3x∂µc̄ �s ∂µ c. (77)

The equations of motion and the momenta are

∂LφΠ

∂c̄
= −�c = 0,

∂LφΠ

∂c
= �c̄ = 0,

∂LφΠ

∂ ˙̄c
= Πc̄ = ċ,

∂LφΠ

∂ċ
= Πc = − ˙̄c. (78)

There are no constraints. For the non-commutative Hamil-
tonian we have

H∗
φΠ =

∫
d3x( ˙̄c �s Πc̄ + ċ �s Πc + Πc �s Πc̄ + ∂ic̄ �s ∂i c)

=
∫

d3x( ˙̄c �s ċ − ċ �s ˙̄c − ˙̄c �s ċ + ∂ic̄ �s ∂ic)

=
∫

d3x( ˙̄c �s ċ + ∂ic̄ �s ∂i c). (79)

We check time independence of H∗
φΠ ,

Ḣ∗
φΠ =

∫
d3x

(
(¨̄c − ∂i∂ic̄) �s ċ + ˙̄c �s (c̈ − ∂i∂ic)

)
= 0. (80)

Using the following ansatz for c, c̄:

c(x) =
1

(2π)3/2

∫
d3k√
2ωk

(
c+(k)eikx + c−(k)e−ikx

)
,

c̄(x) =
1

(2π)3/2

∫
d3k√
2ωk

(
c̄+(k)eikx − c̄−(k)e−ikx

)
(81)

(note that c̄(x) is here imaginary) and the Poisson bracket
for Grassmann fields, {c(x), Πc(x′)} = {c̄(x), Πc̄(x′)} =
−δ3(x − x′), we find

{c̄+(k), c−(k′} = {c̄−(k), c+(k′)} = −iδ3(k − k′). (82)
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For H∗
φΠ we find with the help of the equations of motion

(with k0 = ωk =
√

k2, so that kµkµ = 2ω2
k)

H∗
φΠ =

∫
d3x∂µc̄(x) �s ∂µc(x)

=
∫

d3x

(2π)3

∫
d3k d3k′

2
√

ωkωk′

×(
(+ikµc̄+(k)eikx + ikµc̄−(k)e−ikx)

× �s (+ik′
µc+(k′)eik′x − ik′

µc−(k′)e−ik′x)
)

=
∫

d3kωk

(
c̄+(k)c−(k) + c+(k)c̄−(k)

)
= HφΠ . (83)

We find that non-commutativity does not spoil the free
theory. Quantisation is done by the replacement of the
Poisson brackets by commutators,

{ , }PB ⇒ −i[ , ] , (84)

which again leads to the well known commutator relations
between annihilation and creation operators of fields.

6 Conclusion

We have constructed perturbation theory on a non-
commutative space from the beginning. We have discussed
a general non-local deformation of the freeHamiltonian. For
some of the considered deformations, such as the canonical
one [1], the free Hamiltonian is unaffected by the defor-
mation. In the canonical case, this is even true for gauge
field theory as shown in the previous section. This implies
that IPTOPT as developed in [1,6,8,9] is consistent. How-
ever, the application of these techniques to Gaussian non-
localities [16,17] seems to be somewhat artificial since here
we could show that the introduction of the non-localities
into the free Hamiltonian would alter it significantly when
assuming the usual free field equations. Thus, either one
has to leave the free Hamiltonian untouched [17] or one
has to develop an appropriate free theory.

Furthermore, the discrepancies between IPTOPT and
the NPIA present for non-localities in time have been dis-
cussed in some detail. The main reason is the problem of
passing from non-local products given in the Dirac picture
to the Heisenberg picture. One has to alter these products
in order for them to be consistent. But usually one com-
pares situations where one deals with the same product
in both pictures, which cannot give the same as soon as
non-localities in time are involved. We also want to point
out that the use of LI instead of HI in combination with
IPTOPT is not justified by path integrals as soon as non-
localities involve time.

The main motivation for studying IPTOPT is its uni-
tarity [7] and the well behaving UV/IR mixing [10]. The

disadventages are the violation of causality and the higher
complexity of the Feynman rules. The situation is vice
versa for the NPIA, where the implied time ordering re-
spects causality. The violation of unitarity in NPIA is a
severe problem, whereas it seems to be absent in IPTOPT.

Acknowledgements. We are grateful to Manfred Schweda for
intensive discussions and many very valuable remarks. This
work has been supported by DOC (predoc program of the
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